Document AccessManager functions and events in IAccessManager (#4660)

Co-authored-by: Francisco <fg@frang.io>
Co-authored-by: Ernesto García <ernestognw@gmail.com>
(cherry picked from commit e78628bfcf)
This commit is contained in:
Hadrien Croubois
2023-10-05 17:55:11 +02:00
committed by Francisco Giordano
parent cff043486b
commit d27635fc67
6 changed files with 451 additions and 281 deletions

View File

@ -0,0 +1,97 @@
--- access/manager/AccessManager.sol 2023-10-05 12:17:09.694051809 -0300
+++ access/manager/AccessManager.sol 2023-10-05 12:26:18.498688718 -0300
@@ -6,7 +6,6 @@
import {IAccessManaged} from "./IAccessManaged.sol";
import {Address} from "../../utils/Address.sol";
import {Context} from "../../utils/Context.sol";
-import {Multicall} from "../../utils/Multicall.sol";
import {Math} from "../../utils/math/Math.sol";
import {Time} from "../../utils/types/Time.sol";
@@ -57,7 +56,8 @@
* mindful of the danger associated with functions such as {{Ownable-renounceOwnership}} or
* {{AccessControl-renounceRole}}.
*/
-contract AccessManager is Context, Multicall, IAccessManager {
+// NOTE: The FV version of this contract doesn't include Multicall because CVL HAVOCs on any `delegatecall`.
+contract AccessManager is Context, IAccessManager {
using Time for *;
// Structure that stores the details for a target contract.
@@ -105,7 +105,7 @@
// Used to identify operations that are currently being executed via {execute}.
// This should be transient storage when supported by the EVM.
- bytes32 private _executionId;
+ bytes32 internal _executionId; // private → internal for FV
/**
* @dev Check that the caller is authorized to perform the operation, following the restrictions encoded in
@@ -253,6 +253,11 @@
_setGrantDelay(roleId, newDelay);
}
+ // Exposed for FV
+ function _getTargetAdminDelayFull(address target) internal view virtual returns (uint32, uint32, uint48) {
+ return _targets[target].adminDelay.getFull();
+ }
+
/**
* @dev Internal version of {grantRole} without access control. Returns true if the role was newly granted.
*
@@ -287,6 +292,11 @@
return newMember;
}
+ // Exposed for FV
+ function _getRoleGrantDelayFull(uint64 roleId) internal view virtual returns (uint32, uint32, uint48) {
+ return _roles[roleId].grantDelay.getFull();
+ }
+
/**
* @dev Internal version of {revokeRole} without access control. This logic is also used by {renounceRole}.
* Returns true if the role was previously granted.
@@ -586,7 +596,7 @@
/**
* @dev Check if the current call is authorized according to admin logic.
*/
- function _checkAuthorized() private {
+ function _checkAuthorized() internal virtual { // private → internal virtual for FV
address caller = _msgSender();
(bool immediate, uint32 delay) = _canCallSelf(caller, _msgData());
if (!immediate) {
@@ -609,7 +619,7 @@
*/
function _getAdminRestrictions(
bytes calldata data
- ) private view returns (bool restricted, uint64 roleAdminId, uint32 executionDelay) {
+ ) internal view returns (bool restricted, uint64 roleAdminId, uint32 executionDelay) { // private → internal for FV
if (data.length < 4) {
return (false, 0, 0);
}
@@ -662,7 +672,7 @@
address caller,
address target,
bytes calldata data
- ) private view returns (bool immediate, uint32 delay) {
+ ) internal view returns (bool immediate, uint32 delay) { // private → internal for FV
if (target == address(this)) {
return _canCallSelf(caller, data);
} else {
@@ -716,14 +726,14 @@
/**
* @dev Extracts the selector from calldata. Panics if data is not at least 4 bytes
*/
- function _checkSelector(bytes calldata data) private pure returns (bytes4) {
+ function _checkSelector(bytes calldata data) internal pure returns (bytes4) { // private → internal for FV
return bytes4(data[0:4]);
}
/**
* @dev Hashing function for execute protection
*/
- function _hashExecutionId(address target, bytes4 selector) private pure returns (bytes32) {
+ function _hashExecutionId(address target, bytes4 selector) internal pure returns (bytes32) { // private → internal for FV
return keccak256(abi.encode(target, selector));
}
}

View File

@ -32,8 +32,12 @@ This directory provides ways to restrict who can access the functions of a contr
{{IAuthority}}
{{IAccessManager}}
{{AccessManager}}
{{IAccessManaged}}
{{AccessManaged}}
{{AccessManagerAdapter}}
{{AuthorityUtils}}

View File

@ -58,16 +58,12 @@ abstract contract AccessManaged is Context, IAccessManaged {
_;
}
/**
* @dev Returns the current authority.
*/
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
return _authority;
}
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
@ -79,11 +75,7 @@ abstract contract AccessManaged is Context, IAccessManaged {
_setAuthority(newAuthority);
}
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}

View File

@ -127,26 +127,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
// =================================================== GETTERS ====================================================
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of this manager itself. These are defined by the
* {_canCallSelf} function instead.
*/
/// @inheritdoc IAccessManager
function canCall(
address caller,
address target,
@ -165,86 +146,47 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
}
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
/// @inheritdoc IAccessManager
function expiration() public view virtual returns (uint32) {
return 1 weeks;
}
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and in the event of an accidental increase can be reset
* via {revokeRole}). Defaults to 5 days.
*/
/// @inheritdoc IAccessManager
function minSetback() public view virtual returns (uint32) {
return 5 days;
}
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*/
/// @inheritdoc IAccessManager
function isTargetClosed(address target) public view virtual returns (bool) {
return _targets[target].closed;
}
/**
* @dev Get the role required to call a function.
*/
/// @inheritdoc IAccessManager
function getTargetFunctionRole(address target, bytes4 selector) public view virtual returns (uint64) {
return _targets[target].allowedRoles[selector];
}
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
/// @inheritdoc IAccessManager
function getTargetAdminDelay(address target) public view virtual returns (uint32) {
return _targets[target].adminDelay.get();
}
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
/// @inheritdoc IAccessManager
function getRoleAdmin(uint64 roleId) public view virtual returns (uint64) {
return _roles[roleId].admin;
}
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
/// @inheritdoc IAccessManager
function getRoleGuardian(uint64 roleId) public view virtual returns (uint64) {
return _roles[roleId].guardian;
}
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
/// @inheritdoc IAccessManager
function getRoleGrantDelay(uint64 roleId) public view virtual returns (uint32) {
return _roles[roleId].grantDelay.get();
}
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
/// @inheritdoc IAccessManager
function getAccess(
uint64 roleId,
address account
@ -257,10 +199,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
return (since, currentDelay, pendingDelay, effect);
}
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
/// @inheritdoc IAccessManager
function hasRole(
uint64 roleId,
address account
@ -274,15 +213,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
// =============================================== ROLE MANAGEMENT ===============================================
/**
* @dev Give a label to a role, for improved role discoverabily by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
/// @inheritdoc IAccessManager
function labelRole(uint64 roleId, string calldata label) public virtual onlyAuthorized {
if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) {
revert AccessManagerLockedRole(roleId);
@ -290,55 +221,17 @@ contract AccessManager is Context, Multicall, IAccessManager {
emit RoleLabel(roleId, label);
}
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
/// @inheritdoc IAccessManager
function grantRole(uint64 roleId, address account, uint32 executionDelay) public virtual onlyAuthorized {
_grantRole(roleId, account, getRoleGrantDelay(roleId), executionDelay);
}
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
/// @inheritdoc IAccessManager
function revokeRole(uint64 roleId, address account) public virtual onlyAuthorized {
_revokeRole(roleId, account);
}
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
/// @inheritdoc IAccessManager
function renounceRole(uint64 roleId, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessManagerBadConfirmation();
@ -346,41 +239,17 @@ contract AccessManager is Context, Multicall, IAccessManager {
_revokeRole(roleId, callerConfirmation);
}
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
/// @inheritdoc IAccessManager
function setRoleAdmin(uint64 roleId, uint64 admin) public virtual onlyAuthorized {
_setRoleAdmin(roleId, admin);
}
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
/// @inheritdoc IAccessManager
function setRoleGuardian(uint64 roleId, uint64 guardian) public virtual onlyAuthorized {
_setRoleGuardian(roleId, guardian);
}
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
/// @inheritdoc IAccessManager
function setGrantDelay(uint64 roleId, uint32 newDelay) public virtual onlyAuthorized {
_setGrantDelay(roleId, newDelay);
}
@ -493,15 +362,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
// ============================================= FUNCTION MANAGEMENT ==============================================
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
/// @inheritdoc IAccessManager
function setTargetFunctionRole(
address target,
bytes4[] calldata selectors,
@ -522,15 +383,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
emit TargetFunctionRoleUpdated(target, selector, roleId);
}
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
/// @inheritdoc IAccessManager
function setTargetAdminDelay(address target, uint32 newDelay) public virtual onlyAuthorized {
_setTargetAdminDelay(target, newDelay);
}
@ -548,15 +401,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
// =============================================== MODE MANAGEMENT ================================================
/**
* @dev Set the closed flag for a contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
/// @inheritdoc IAccessManager
function setTargetClosed(address target, bool closed) public virtual onlyAuthorized {
_setTargetClosed(target, closed);
}
@ -575,38 +420,18 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
// ============================================== DELAYED OPERATIONS ==============================================
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
/// @inheritdoc IAccessManager
function getSchedule(bytes32 id) public view virtual returns (uint48) {
uint48 timepoint = _schedules[id].timepoint;
return _isExpired(timepoint) ? 0 : timepoint;
}
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
/// @inheritdoc IAccessManager
function getNonce(bytes32 id) public view virtual returns (uint32) {
return _schedules[id].nonce;
}
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
/// @inheritdoc IAccessManager
function schedule(
address target,
bytes calldata data,
@ -654,15 +479,7 @@ contract AccessManager is Context, Multicall, IAccessManager {
}
}
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
/// @inheritdoc IAccessManager
// Reentrancy is not an issue because permissions are checked on msg.sender. Additionally,
// _consumeScheduledOp guarantees a scheduled operation is only executed once.
// slither-disable-next-line reentrancy-no-eth
@ -699,15 +516,31 @@ contract AccessManager is Context, Multicall, IAccessManager {
return nonce;
}
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
/// @inheritdoc IAccessManager
function cancel(address caller, address target, bytes calldata data) public virtual returns (uint32) {
address msgsender = _msgSender();
bytes4 selector = _checkSelector(data);
bytes32 operationId = hashOperation(caller, target, data);
if (_schedules[operationId].timepoint == 0) {
revert AccessManagerNotScheduled(operationId);
} else if (caller != msgsender) {
// calls can only be canceled by the account that scheduled them, a global admin, or by a guardian of the required role.
(bool isAdmin, ) = hasRole(ADMIN_ROLE, msgsender);
(bool isGuardian, ) = hasRole(getRoleGuardian(getTargetFunctionRole(target, selector)), msgsender);
if (!isAdmin && !isGuardian) {
revert AccessManagerUnauthorizedCancel(msgsender, caller, target, selector);
}
}
delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce
uint32 nonce = _schedules[operationId].nonce;
emit OperationCanceled(operationId, nonce);
return nonce;
}
/// @inheritdoc IAccessManager
function consumeScheduledOp(address caller, bytes calldata data) public virtual {
address target = _msgSender();
if (IAccessManaged(target).isConsumingScheduledOp() != IAccessManaged.isConsumingScheduledOp.selector) {
@ -739,61 +572,13 @@ contract AccessManager is Context, Multicall, IAccessManager {
return nonce;
}
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) public virtual returns (uint32) {
address msgsender = _msgSender();
bytes4 selector = _checkSelector(data);
bytes32 operationId = hashOperation(caller, target, data);
if (_schedules[operationId].timepoint == 0) {
revert AccessManagerNotScheduled(operationId);
} else if (caller != msgsender) {
// calls can only be canceled by the account that scheduled them, a global admin, or by a guardian of the required role.
(bool isAdmin, ) = hasRole(ADMIN_ROLE, msgsender);
(bool isGuardian, ) = hasRole(getRoleGuardian(getTargetFunctionRole(target, selector)), msgsender);
if (!isAdmin && !isGuardian) {
revert AccessManagerUnauthorizedCancel(msgsender, caller, target, selector);
}
}
delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce
uint32 nonce = _schedules[operationId].nonce;
emit OperationCanceled(operationId, nonce);
return nonce;
}
/**
* @dev Hashing function for delayed operations
*/
/// @inheritdoc IAccessManager
function hashOperation(address caller, address target, bytes calldata data) public view virtual returns (bytes32) {
return keccak256(abi.encode(caller, target, data));
}
/**
* @dev Hashing function for execute protection
*/
function _hashExecutionId(address target, bytes4 selector) private pure returns (bytes32) {
return keccak256(abi.encode(target, selector));
}
// ==================================================== OTHERS ====================================================
/**
* @dev Change the AccessManager instance used by a contract that correctly uses this instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
/// @inheritdoc IAccessManager
function updateAuthority(address target, address newAuthority) public virtual onlyAuthorized {
IAccessManaged(target).setAuthority(newAuthority);
}
@ -935,4 +720,11 @@ contract AccessManager is Context, Multicall, IAccessManager {
function _checkSelector(bytes calldata data) private pure returns (bytes4) {
return bytes4(data[0:4]);
}
/**
* @dev Hashing function for execute protection
*/
function _hashExecutionId(address target, bytes4 selector) private pure returns (bytes32) {
return keccak256(abi.encode(target, selector));
}
}

View File

@ -4,15 +4,29 @@
pragma solidity ^0.8.20;
interface IAccessManaged {
/**
* @dev Authority that manages this contract was updated.
*/
event AuthorityUpdated(address authority);
error AccessManagedUnauthorized(address caller);
error AccessManagedRequiredDelay(address caller, uint32 delay);
error AccessManagedInvalidAuthority(address authority);
/**
* @dev Returns the current authority.
*/
function authority() external view returns (address);
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
function setAuthority(address) external;
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
function isConsumingScheduledOp() external view returns (bytes4);
}

View File

@ -29,7 +29,11 @@ interface IAccessManager {
*/
event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev Informational labelling for a roleId.
*/
event RoleLabel(uint64 indexed roleId, string label);
/**
* @dev Emitted when `account` is granted `roleId`.
*
@ -38,12 +42,40 @@ interface IAccessManager {
* otherwise it indicates the execution delay for this account and roleId is updated.
*/
event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
/**
* @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
*/
event RoleRevoked(uint64 indexed roleId, address indexed account);
/**
* @dev Role acting as admin over a given `roleId` is updated.
*/
event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
/**
* @dev Role acting as guardian over a given `roleId` is updated.
*/
event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
/**
* @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
*/
event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
/**
* @dev Target mode is updated (true = closed, false = open).
*/
event TargetClosed(address indexed target, bool closed);
/**
* @dev Role required to invoke `selector` on `target` is updated to `roleId`.
*/
event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
/**
* @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
*/
event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
error AccessManagerAlreadyScheduled(bytes32 operationId);
@ -59,63 +91,302 @@ interface IAccessManager {
error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
error AccessManagerInvalidInitialAdmin(address initialAdmin);
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of this manager itself. These are defined by the
* {_canCallSelf} function instead.
*/
function canCall(
address caller,
address target,
bytes4 selector
) external view returns (bool allowed, uint32 delay);
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
function expiration() external view returns (uint32);
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and reset via {revokeRole} in the case event of an
* accidental increase). Defaults to 5 days.
*/
function minSetback() external view returns (uint32);
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*/
function isTargetClosed(address target) external view returns (bool);
/**
* @dev Get the role required to call a function.
*/
function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
function getTargetAdminDelay(address target) external view returns (uint32);
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
function getRoleAdmin(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
function getRoleGuardian(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
function hasRole(uint64 roleId, address account) external view returns (bool, uint32);
/**
* @dev Give a label to a role, for improved role discoverability by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
function labelRole(uint64 roleId, string calldata label) external;
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function revokeRole(uint64 roleId, address account) external;
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function renounceRole(uint64 roleId, address callerConfirmation) external;
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
function setRoleAdmin(uint64 roleId, uint64 admin) external;
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
function setRoleGuardian(uint64 roleId, uint64 guardian) external;
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
function setGrantDelay(uint64 roleId, uint32 newDelay) external;
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function setTargetAdminDelay(address target, uint32 newDelay) external;
/**
* @dev Set the closed flag for a contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
function setTargetClosed(address target, bool closed) external;
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
function getSchedule(bytes32 id) external view returns (uint48);
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
function getNonce(bytes32 id) external view returns (uint32);
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
function execute(address target, bytes calldata data) external payable returns (uint32);
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) external returns (uint32);
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
function consumeScheduledOp(address caller, bytes calldata data) external;
/**
* @dev Hashing function for delayed operations.
*/
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Changes the authority of a target managed by this manager instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
function updateAuthority(address target, address newAuthority) external;
}