Files
uniswap-v2/contracts/UniswapERC20.sol
2019-10-02 11:25:03 -07:00

172 lines
6.3 KiB
Solidity

pragma solidity ^0.5.11;
import './ERC20.sol';
import './Math.sol';
import './interfaces/IERC20.sol';
contract UniswapERC20 is ERC20 {
using SafeMath for uint256;
event SwapAForB(address indexed buyer, uint256 amountSold, uint256 amountBought);
event SwapBForA(address indexed buyer, uint256 amountSold, uint256 amountBought);
event AddLiquidity(address indexed provider, uint256 amountTokenA, uint256 amountTokenB);
event RemoveLiquidity(address indexed provider, uint256 amountTokenA, uint256 amountTokenB);
struct TokenData {
uint128 reserve; // cached reserve for this token
uint128 accumulator; // accumulated TWAP value (TODO)
}
// ERC20 Data
string public constant name = 'Uniswap V2';
string public constant symbol = 'UNI-V2';
uint256 public constant decimals = 18;
address public tokenA; // ERC20 token traded on this contract
address public tokenB; // ERC20 token traded on this contract
address public factory; // factory that created this contract
mapping (address => TokenData) public dataForToken;
bool private rentrancyLock = false;
modifier nonReentrant() {
require(!rentrancyLock);
rentrancyLock = true;
_;
rentrancyLock = false;
}
constructor(address _tokenA, address _tokenB) public {
require(address(_tokenA) != address(0) && _tokenB != address(0), 'INVALID_ADDRESS');
factory = msg.sender;
tokenA = _tokenA;
tokenB = _tokenB;
}
function () external {}
function getInputPrice(uint256 inputAmount, uint256 inputReserve, uint256 outputReserve) public pure returns (uint256) {
require(inputReserve > 0 && outputReserve > 0, 'INVALID_VALUE');
uint256 inputAmountWithFee = inputAmount.mul(997);
uint256 numerator = inputAmountWithFee.mul(outputReserve);
uint256 denominator = inputReserve.mul(1000).add(inputAmountWithFee);
return numerator / denominator;
}
function swap(address inputToken, address outputToken, address recipient) internal returns (uint256, uint256) {
TokenData memory inputTokenData = dataForToken[inputToken];
TokenData memory outputTokenData = dataForToken[outputToken];
uint256 newInputReserve = IERC20(inputToken).balanceOf(address(this));
uint256 oldInputReserve = uint256(inputTokenData.reserve);
uint256 currentOutputReserve = IERC20(outputToken).balanceOf(address(this));
uint256 amountSold = newInputReserve - oldInputReserve;
uint256 amountBought = getInputPrice(amountSold, oldInputReserve, currentOutputReserve);
require(IERC20(outputToken).transfer(recipient, amountBought), "TRANSFER_FAILED");
uint256 newOutputReserve = currentOutputReserve - amountBought;
dataForToken[inputToken] = TokenData({
reserve: uint128(newInputReserve),
accumulator: inputTokenData.accumulator // TODO: update accumulator value
});
dataForToken[outputToken] = TokenData({
reserve: uint128(newOutputReserve),
accumulator: outputTokenData.accumulator // TODO: update accumulator value
});
return (amountSold, amountBought);
}
//TO: DO msg.sender is wrapper
function swapAForB(address recipient) public nonReentrant returns (uint256) {
(uint256 amountSold, uint256 amountBought) = swap(tokenA, tokenB, recipient);
emit SwapAForB(msg.sender, amountSold, amountBought);
return amountBought;
}
//TO: DO msg.sender is wrapper
function swapBForA(address recipient) public nonReentrant returns (uint256) {
(uint256 amountSold, uint256 amountBought) = swap(tokenB, tokenA, recipient);
emit SwapBForA(msg.sender, amountSold, amountBought);
return amountBought;
}
function addLiquidity(address recipient) public nonReentrant returns (uint256) {
uint256 _totalSupply = totalSupply;
address _tokenA = tokenA;
address _tokenB = tokenB;
TokenData memory tokenAData = dataForToken[_tokenA];
TokenData memory tokenBData = dataForToken[_tokenB];
uint256 newReserveA = IERC20(_tokenA).balanceOf(address(this));
uint256 newReserveB = IERC20(_tokenB).balanceOf(address(this));
uint256 amountA = newReserveA - tokenAData.reserve;
uint256 amountB = newReserveB - tokenBData.reserve;
uint256 liquidityMinted;
if (_totalSupply > 0) {
liquidityMinted = Math.min((amountA.mul(_totalSupply).div(tokenAData.reserve)), (amountB.mul(_totalSupply).div(tokenBData.reserve)));
} else {
liquidityMinted = Math.sqrt(amountA.mul(amountB));
}
balanceOf[recipient] = balanceOf[recipient].add(liquidityMinted);
totalSupply = _totalSupply.add(liquidityMinted);
dataForToken[_tokenA] = TokenData({
reserve: uint128(newReserveA),
accumulator: tokenAData.accumulator // TODO: accumulate
});
dataForToken[_tokenB] = TokenData({
reserve: uint128(newReserveB),
accumulator: tokenBData.accumulator // TODO: accumulate
});
emit AddLiquidity(msg.sender, amountA, amountB);
emit Transfer(address(0), msg.sender, liquidityMinted);
return liquidityMinted;
}
function removeLiquidity(uint256 amount, address recipient) public nonReentrant returns (uint256, uint256) {
require(amount > 0);
address _tokenA = tokenA;
address _tokenB = tokenB;
TokenData memory tokenAData = dataForToken[_tokenA];
TokenData memory tokenBData = dataForToken[_tokenB];
uint256 reserveA = IERC20(_tokenA).balanceOf(address(this));
uint256 reserveB = IERC20(_tokenB).balanceOf(address(this));
uint256 _totalSupply = totalSupply;
uint256 tokenAAmount = amount.mul(reserveA) / _totalSupply;
uint256 tokenBAmount = amount.mul(reserveB) / _totalSupply;
balanceOf[msg.sender] = balanceOf[msg.sender].sub(amount);
totalSupply = _totalSupply.sub(amount);
require(IERC20(_tokenA).transfer(recipient, tokenAAmount));
require(IERC20(_tokenB).transfer(recipient, tokenBAmount));
dataForToken[_tokenA] = TokenData({
reserve: uint128(reserveA - tokenAAmount),
accumulator: tokenAData.accumulator // TODO: accumulate
});
dataForToken[_tokenB] = TokenData({
reserve: uint128(reserveB - tokenBAmount),
accumulator: tokenBData.accumulator // TODO: accumulate
});
emit RemoveLiquidity(msg.sender, tokenAAmount, tokenBAmount);
emit Transfer(msg.sender, address(0), amount);
return (tokenAAmount, tokenBAmount);
}
}