Fix P256 corner cases (#5218)
Co-authored-by: Hadrien Croubois <hadrien.croubois@gmail.com> Co-authored-by: Ernesto García <ernestognw@gmail.com>
This commit is contained in:
@ -10,4 +10,12 @@ module.exports = {
|
|||||||
fgrep: '[skip-on-coverage]',
|
fgrep: '[skip-on-coverage]',
|
||||||
invert: true,
|
invert: true,
|
||||||
},
|
},
|
||||||
|
// Work around stack too deep for coverage
|
||||||
|
configureYulOptimizer: true,
|
||||||
|
solcOptimizerDetails: {
|
||||||
|
yul: true,
|
||||||
|
yulDetails: {
|
||||||
|
optimizerSteps: '',
|
||||||
|
},
|
||||||
|
},
|
||||||
};
|
};
|
||||||
|
|||||||
@ -185,6 +185,13 @@ library P256 {
|
|||||||
/**
|
/**
|
||||||
* @dev Point addition on the jacobian coordinates
|
* @dev Point addition on the jacobian coordinates
|
||||||
* Reference: https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-1998-cmo-2
|
* Reference: https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-1998-cmo-2
|
||||||
|
*
|
||||||
|
* Note that:
|
||||||
|
*
|
||||||
|
* - `addition-add-1998-cmo-2` doesn't support identical input points. This version is modified to use
|
||||||
|
* the `h` and `r` values computed by `addition-add-1998-cmo-2` to detect identical inputs, and fallback to
|
||||||
|
* `doubling-dbl-1998-cmo-2` if needed.
|
||||||
|
* - if one of the points is at infinity (i.e. `z=0`), the result is undefined.
|
||||||
*/
|
*/
|
||||||
function _jAdd(
|
function _jAdd(
|
||||||
JPoint memory p1,
|
JPoint memory p1,
|
||||||
@ -197,25 +204,53 @@ library P256 {
|
|||||||
let z1 := mload(add(p1, 0x40))
|
let z1 := mload(add(p1, 0x40))
|
||||||
let zz1 := mulmod(z1, z1, p) // zz1 = z1²
|
let zz1 := mulmod(z1, z1, p) // zz1 = z1²
|
||||||
let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, p), z2, p), p) // s1 = y1*z2³
|
let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, p), z2, p), p) // s1 = y1*z2³
|
||||||
let r := addmod(mulmod(y2, mulmod(zz1, z1, p), p), sub(p, s1), p) // r = s2-s1 = y2*z1³-s1
|
let r := addmod(mulmod(y2, mulmod(zz1, z1, p), p), sub(p, s1), p) // r = s2-s1 = y2*z1³-s1 = y2*z1³-y1*z2³
|
||||||
let u1 := mulmod(mload(p1), mulmod(z2, z2, p), p) // u1 = x1*z2²
|
let u1 := mulmod(mload(p1), mulmod(z2, z2, p), p) // u1 = x1*z2²
|
||||||
let h := addmod(mulmod(x2, zz1, p), sub(p, u1), p) // h = u2-u1 = x2*z1²-u1
|
let h := addmod(mulmod(x2, zz1, p), sub(p, u1), p) // h = u2-u1 = x2*z1²-u1 = x2*z1²-x1*z2²
|
||||||
let hh := mulmod(h, h, p) // h²
|
|
||||||
|
|
||||||
// x' = r²-h³-2*u1*h²
|
// detect edge cases where inputs are identical
|
||||||
rx := addmod(
|
switch and(iszero(r), iszero(h))
|
||||||
addmod(mulmod(r, r, p), sub(p, mulmod(h, hh, p)), p),
|
// case 0: points are different
|
||||||
sub(p, mulmod(2, mulmod(u1, hh, p), p)),
|
case 0 {
|
||||||
p
|
let hh := mulmod(h, h, p) // h²
|
||||||
)
|
|
||||||
// y' = r*(u1*h²-x')-s1*h³
|
// x' = r²-h³-2*u1*h²
|
||||||
ry := addmod(
|
rx := addmod(
|
||||||
mulmod(r, addmod(mulmod(u1, hh, p), sub(p, rx), p), p),
|
addmod(mulmod(r, r, p), sub(p, mulmod(h, hh, p)), p),
|
||||||
sub(p, mulmod(s1, mulmod(h, hh, p), p)),
|
sub(p, mulmod(2, mulmod(u1, hh, p), p)),
|
||||||
p
|
p
|
||||||
)
|
)
|
||||||
// z' = h*z1*z2
|
// y' = r*(u1*h²-x')-s1*h³
|
||||||
rz := mulmod(h, mulmod(z1, z2, p), p)
|
ry := addmod(
|
||||||
|
mulmod(r, addmod(mulmod(u1, hh, p), sub(p, rx), p), p),
|
||||||
|
sub(p, mulmod(s1, mulmod(h, hh, p), p)),
|
||||||
|
p
|
||||||
|
)
|
||||||
|
// z' = h*z1*z2
|
||||||
|
rz := mulmod(h, mulmod(z1, z2, p), p)
|
||||||
|
}
|
||||||
|
// case 1: points are equal
|
||||||
|
case 1 {
|
||||||
|
let x := x2
|
||||||
|
let y := y2
|
||||||
|
let z := z2
|
||||||
|
let yy := mulmod(y, y, p)
|
||||||
|
let zz := mulmod(z, z, p)
|
||||||
|
let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
|
||||||
|
let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
|
||||||
|
|
||||||
|
// x' = t = m²-2*s
|
||||||
|
rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
|
||||||
|
|
||||||
|
// y' = m*(s-t)-8*y⁴ = m*(s-x')-8*y⁴
|
||||||
|
// cut the computation to avoid stack too deep
|
||||||
|
let rytmp1 := sub(p, mulmod(8, mulmod(yy, yy, p), p)) // -8*y⁴
|
||||||
|
let rytmp2 := addmod(s, sub(p, rx), p) // s-x'
|
||||||
|
ry := addmod(mulmod(m, rytmp2, p), rytmp1, p) // m*(s-x')-8*y⁴
|
||||||
|
|
||||||
|
// z' = 2*y*z
|
||||||
|
rz := mulmod(2, mulmod(y, z, p), p)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -228,8 +263,8 @@ library P256 {
|
|||||||
let p := P
|
let p := P
|
||||||
let yy := mulmod(y, y, p)
|
let yy := mulmod(y, y, p)
|
||||||
let zz := mulmod(z, z, p)
|
let zz := mulmod(z, z, p)
|
||||||
let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
|
|
||||||
let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
|
let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
|
||||||
|
let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
|
||||||
|
|
||||||
// x' = t = m²-2*s
|
// x' = t = m²-2*s
|
||||||
rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
|
rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
|
||||||
@ -244,10 +279,11 @@ library P256 {
|
|||||||
* @dev Compute G·u1 + P·u2 using the precomputed points for G and P (see {_preComputeJacobianPoints}).
|
* @dev Compute G·u1 + P·u2 using the precomputed points for G and P (see {_preComputeJacobianPoints}).
|
||||||
*
|
*
|
||||||
* Uses Strauss Shamir trick for EC multiplication
|
* Uses Strauss Shamir trick for EC multiplication
|
||||||
* https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method.
|
* https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method
|
||||||
* We optimise on this a bit to do with 2 bits at a time rather than a single bit.
|
*
|
||||||
* The individual points for a single pass are precomputed.
|
* We optimize this for 2 bits at a time rather than a single bit. The individual points for a single pass are
|
||||||
* Overall this reduces the number of additions while keeping the same number of doublings.
|
* precomputed. Overall this reduces the number of additions while keeping the same number of
|
||||||
|
* doublings
|
||||||
*/
|
*/
|
||||||
function _jMultShamir(
|
function _jMultShamir(
|
||||||
JPoint[16] memory points,
|
JPoint[16] memory points,
|
||||||
@ -263,9 +299,14 @@ library P256 {
|
|||||||
(x, y, z) = _jDouble(x, y, z);
|
(x, y, z) = _jDouble(x, y, z);
|
||||||
(x, y, z) = _jDouble(x, y, z);
|
(x, y, z) = _jDouble(x, y, z);
|
||||||
}
|
}
|
||||||
// Read 2 bits of u1, and 2 bits of u2. Combining the two give a lookup index in the table.
|
// Read 2 bits of u1, and 2 bits of u2. Combining the two gives the lookup index in the table.
|
||||||
uint256 pos = ((u1 >> 252) & 0xc) | ((u2 >> 254) & 0x3);
|
uint256 pos = ((u1 >> 252) & 0xc) | ((u2 >> 254) & 0x3);
|
||||||
if (pos > 0) {
|
// Points that have z = 0 are points at infinity. They are the additive 0 of the group
|
||||||
|
// - if the lookup point is a 0, we can skip it
|
||||||
|
// - otherwise:
|
||||||
|
// - if the current point (x, y, z) is 0, we use the lookup point as our new value (0+P=P)
|
||||||
|
// - if the current point (x, y, z) is not 0, both points are valid and we can use `_jAdd`
|
||||||
|
if (points[pos].z != 0) {
|
||||||
if (z == 0) {
|
if (z == 0) {
|
||||||
(x, y, z) = (points[pos].x, points[pos].y, points[pos].z);
|
(x, y, z) = (points[pos].x, points[pos].y, points[pos].z);
|
||||||
} else {
|
} else {
|
||||||
@ -291,6 +332,11 @@ library P256 {
|
|||||||
* │ 8 │ 2g 2g+p 2g+2p 2g+3p │
|
* │ 8 │ 2g 2g+p 2g+2p 2g+3p │
|
||||||
* │ 12 │ 3g 3g+p 3g+2p 3g+3p │
|
* │ 12 │ 3g 3g+p 3g+2p 3g+3p │
|
||||||
* └────┴─────────────────────┘
|
* └────┴─────────────────────┘
|
||||||
|
*
|
||||||
|
* Note that `_jAdd` (and thus `_jAddPoint`) does not handle the case where one of the inputs is a point at
|
||||||
|
* infinity (z = 0). However, we know that since `N ≡ 1 mod 2` and `N ≡ 1 mod 3`, there is no point P such that
|
||||||
|
* 2P = 0 or 3P = 0. This guarantees that g, 2g, 3g, p, 2p, 3p are all non-zero, and that all `_jAddPoint` calls
|
||||||
|
* have valid inputs.
|
||||||
*/
|
*/
|
||||||
function _preComputeJacobianPoints(uint256 px, uint256 py) private pure returns (JPoint[16] memory points) {
|
function _preComputeJacobianPoints(uint256 px, uint256 py) private pure returns (JPoint[16] memory points) {
|
||||||
points[0x00] = JPoint(0, 0, 0); // 0,0
|
points[0x00] = JPoint(0, 0, 0); // 0,0
|
||||||
|
|||||||
@ -13,11 +13,11 @@ module.exports = {
|
|||||||
// Range from start to end in increment
|
// Range from start to end in increment
|
||||||
// Example: range(17,42,7) → [17,24,31,38]
|
// Example: range(17,42,7) → [17,24,31,38]
|
||||||
range: (start, stop = undefined, step = 1) => {
|
range: (start, stop = undefined, step = 1) => {
|
||||||
if (!stop) {
|
if (stop == undefined) {
|
||||||
stop = start;
|
stop = start;
|
||||||
start = 0;
|
start = 0;
|
||||||
}
|
}
|
||||||
return start < stop ? Array.from({ length: Math.ceil((stop - start) / step) }, (_, i) => start + i * step) : [];
|
return start < stop ? Array.from({ length: (stop - start + step - 1) / step }, (_, i) => start + i * step) : [];
|
||||||
},
|
},
|
||||||
|
|
||||||
// Unique elements, with an optional getter function
|
// Unique elements, with an optional getter function
|
||||||
|
|||||||
@ -9,8 +9,8 @@ import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
|
|||||||
|
|
||||||
contract P256Test is Test {
|
contract P256Test is Test {
|
||||||
/// forge-config: default.fuzz.runs = 512
|
/// forge-config: default.fuzz.runs = 512
|
||||||
function testVerify(uint256 seed, bytes32 digest) public {
|
function testVerify(bytes32 digest, uint256 seed) public {
|
||||||
uint256 privateKey = bound(uint256(keccak256(abi.encode(seed))), 1, P256.N - 1);
|
uint256 privateKey = _asPrivateKey(seed);
|
||||||
|
|
||||||
(bytes32 x, bytes32 y) = P256PublicKey.getPublicKey(privateKey);
|
(bytes32 x, bytes32 y) = P256PublicKey.getPublicKey(privateKey);
|
||||||
(bytes32 r, bytes32 s) = vm.signP256(privateKey, digest);
|
(bytes32 r, bytes32 s) = vm.signP256(privateKey, digest);
|
||||||
@ -20,8 +20,8 @@ contract P256Test is Test {
|
|||||||
}
|
}
|
||||||
|
|
||||||
/// forge-config: default.fuzz.runs = 512
|
/// forge-config: default.fuzz.runs = 512
|
||||||
function testRecover(uint256 seed, bytes32 digest) public {
|
function testRecover(bytes32 digest, uint256 seed) public {
|
||||||
uint256 privateKey = bound(uint256(keccak256(abi.encode(seed))), 1, P256.N - 1);
|
uint256 privateKey = _asPrivateKey(seed);
|
||||||
|
|
||||||
(bytes32 x, bytes32 y) = P256PublicKey.getPublicKey(privateKey);
|
(bytes32 x, bytes32 y) = P256PublicKey.getPublicKey(privateKey);
|
||||||
(bytes32 r, bytes32 s) = vm.signP256(privateKey, digest);
|
(bytes32 r, bytes32 s) = vm.signP256(privateKey, digest);
|
||||||
@ -31,6 +31,10 @@ contract P256Test is Test {
|
|||||||
assertTrue((qx0 == x && qy0 == y) || (qx1 == x && qy1 == y));
|
assertTrue((qx0 == x && qy0 == y) || (qx1 == x && qy1 == y));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
function _asPrivateKey(uint256 seed) private pure returns (uint256) {
|
||||||
|
return bound(seed, 1, P256.N - 1);
|
||||||
|
}
|
||||||
|
|
||||||
function _ensureLowerS(bytes32 s) private pure returns (bytes32) {
|
function _ensureLowerS(bytes32 s) private pure returns (bytes32) {
|
||||||
uint256 _s = uint256(s);
|
uint256 _s = uint256(s);
|
||||||
unchecked {
|
unchecked {
|
||||||
|
|||||||
Reference in New Issue
Block a user