Add Bytes32x2Set (#5442)

Co-authored-by: Ernesto García <ernestognw@gmail.com>
This commit is contained in:
Hadrien Croubois
2025-02-04 20:30:53 +01:00
committed by GitHub
parent 2141d3faf5
commit 441dc141ac
7 changed files with 261 additions and 12 deletions

View File

@ -0,0 +1,5 @@
---
'openzeppelin-solidity': minor
---
`EnumerableSet`: Add `Bytes32x2Set` that handles (ordered) pairs of bytes32.

View File

@ -0,0 +1,5 @@
---
'openzeppelin-solidity': minor
---
`Hashes`: Expose `efficientKeccak256` for hashing non-commutative pairs of bytes32 without allocating extra memory.

View File

@ -15,13 +15,13 @@ library Hashes {
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/ */
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) { function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a); return a < b ? efficientKeccak256(a, b) : efficientKeccak256(b, a);
} }
/** /**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/ */
function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) { function efficientKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32 value) {
assembly ("memory-safe") { assembly ("memory-safe") {
mstore(0x00, a) mstore(0x00, a)
mstore(0x20, b) mstore(0x20, b)

View File

@ -4,6 +4,8 @@
pragma solidity ^0.8.20; pragma solidity ^0.8.20;
import {Hashes} from "../cryptography/Hashes.sol";
/** /**
* @dev Library for managing * @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
@ -372,4 +374,115 @@ library EnumerableSet {
return result; return result;
} }
struct Bytes32x2Set {
// Storage of set values
bytes32[2][] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the self.
mapping(bytes32 valueHash => uint256) _positions;
}
/**
* @dev Add a value to a self. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32x2Set storage self, bytes32[2] memory value) internal returns (bool) {
if (!contains(self, value)) {
self._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
self._positions[_hash(value)] = self._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a self. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32x2Set storage self, bytes32[2] memory value) internal returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
bytes32 valueHash = _hash(value);
uint256 position = self._positions[valueHash];
if (position != 0) {
// Equivalent to contains(self, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = self._values.length - 1;
if (valueIndex != lastIndex) {
bytes32[2] memory lastValue = self._values[lastIndex];
// Move the lastValue to the index where the value to delete is
self._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
self._positions[_hash(lastValue)] = position;
}
// Delete the slot where the moved value was stored
self._values.pop();
// Delete the tracked position for the deleted slot
delete self._positions[valueHash];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the self. O(1).
*/
function contains(Bytes32x2Set storage self, bytes32[2] memory value) internal view returns (bool) {
return self._positions[_hash(value)] != 0;
}
/**
* @dev Returns the number of values on the self. O(1).
*/
function length(Bytes32x2Set storage self) internal view returns (uint256) {
return self._values.length;
}
/**
* @dev Returns the value stored at position `index` in the self. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32x2Set storage self, uint256 index) internal view returns (bytes32[2] memory) {
return self._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32x2Set storage self) internal view returns (bytes32[2][] memory) {
return self._values;
}
function _hash(bytes32[2] memory value) private pure returns (bytes32) {
return Hashes.efficientKeccak256(value[0], value[1]);
}
} }

View File

@ -5,6 +5,8 @@ const { TYPES } = require('./EnumerableSet.opts');
const header = `\ const header = `\
pragma solidity ^0.8.20; pragma solidity ^0.8.20;
import {Hashes} from "../cryptography/Hashes.sol";
/** /**
* @dev Library for managing * @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
@ -233,6 +235,121 @@ function values(${name} storage set) internal view returns (${type}[] memory) {
} }
`; `;
const memorySet = ({ name, type }) => `\
struct ${name} {
// Storage of set values
${type}[] _values;
// Position is the index of the value in the \`values\` array plus 1.
// Position 0 is used to mean a value is not in the self.
mapping(bytes32 valueHash => uint256) _positions;
}
/**
* @dev Add a value to a self. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(${name} storage self, ${type} memory value) internal returns (bool) {
if (!contains(self, value)) {
self._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
self._positions[_hash(value)] = self._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a self. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(${name} storage self, ${type} memory value) internal returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
bytes32 valueHash = _hash(value);
uint256 position = self._positions[valueHash];
if (position != 0) {
// Equivalent to contains(self, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = self._values.length - 1;
if (valueIndex != lastIndex) {
${type} memory lastValue = self._values[lastIndex];
// Move the lastValue to the index where the value to delete is
self._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
self._positions[_hash(lastValue)] = position;
}
// Delete the slot where the moved value was stored
self._values.pop();
// Delete the tracked position for the deleted slot
delete self._positions[valueHash];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the self. O(1).
*/
function contains(${name} storage self, ${type} memory value) internal view returns (bool) {
return self._positions[_hash(value)] != 0;
}
/**
* @dev Returns the number of values on the self. O(1).
*/
function length(${name} storage self) internal view returns (uint256) {
return self._values.length;
}
/**
* @dev Returns the value stored at position \`index\` in the self. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - \`index\` must be strictly less than {length}.
*/
function at(${name} storage self, uint256 index) internal view returns (${type} memory) {
return self._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(${name} storage self) internal view returns (${type}[] memory) {
return self._values;
}
`;
const hashes = `\
function _hash(bytes32[2] memory value) private pure returns (bytes32) {
return Hashes.efficientKeccak256(value[0], value[1]);
}
`;
// GENERATE // GENERATE
module.exports = format( module.exports = format(
header.trimEnd(), header.trimEnd(),
@ -240,7 +357,9 @@ module.exports = format(
format( format(
[].concat( [].concat(
defaultSet, defaultSet,
TYPES.map(details => customSet(details)), TYPES.filter(({ size }) => size == undefined).map(details => customSet(details)),
TYPES.filter(({ size }) => size != undefined).map(details => memorySet(details)),
hashes,
), ),
).trimEnd(), ).trimEnd(),
'}', '}',

View File

@ -1,12 +1,16 @@
const { capitalize } = require('../../helpers'); const { capitalize } = require('../../helpers');
const mapType = str => (str == 'uint256' ? 'Uint' : capitalize(str)); const mapType = ({ type, size }) => [type == 'uint256' ? 'Uint' : capitalize(type), size].filter(Boolean).join('x');
const formatType = type => ({ const formatType = ({ type, size = undefined }) => ({
name: `${mapType(type)}Set`, name: `${mapType({ type, size })}Set`,
type, type: size != undefined ? `${type}[${size}]` : type,
base: size != undefined ? type : undefined,
size,
}); });
const TYPES = ['bytes32', 'address', 'uint256'].map(formatType); const TYPES = [{ type: 'bytes32' }, { type: 'bytes32', size: 2 }, { type: 'address' }, { type: 'uint256' }].map(
formatType,
);
module.exports = { TYPES, formatType }; module.exports = { TYPES, formatType };

View File

@ -20,10 +20,13 @@ async function fixture() {
const mock = await ethers.deployContract('$EnumerableSet'); const mock = await ethers.deployContract('$EnumerableSet');
const env = Object.fromEntries( const env = Object.fromEntries(
TYPES.map(({ name, type }) => [ TYPES.map(({ name, type, base, size }) => [
type, type,
{ {
values: Array.from({ length: 3 }, generators[type]), values: Array.from(
{ length: 3 },
size ? () => Array.from({ length: size }, generators[base]) : generators[type],
),
methods: getMethods(mock, { methods: getMethods(mock, {
add: `$add(uint256,${type})`, add: `$add(uint256,${type})`,
remove: `$remove(uint256,${type})`, remove: `$remove(uint256,${type})`,
@ -33,8 +36,8 @@ async function fixture() {
values: `$values_EnumerableSet_${name}(uint256)`, values: `$values_EnumerableSet_${name}(uint256)`,
}), }),
events: { events: {
addReturn: `return$add_EnumerableSet_${name}_${type}`, addReturn: `return$add_EnumerableSet_${name}_${type.replace(/[[\]]/g, '_')}`,
removeReturn: `return$remove_EnumerableSet_${name}_${type}`, removeReturn: `return$remove_EnumerableSet_${name}_${type.replace(/[[\]]/g, '_')}`,
}, },
}, },
]), ]),