Add Binary heap structure (#5084)

Co-authored-by: Ernesto García <ernestognw@gmail.com>
Co-authored-by: cairo <cairoeth@protonmail.com>
This commit is contained in:
Hadrien Croubois
2024-07-23 19:31:26 +02:00
committed by GitHub
parent 9e73c4b581
commit 231fae33f0
16 changed files with 1406 additions and 65 deletions

View File

@ -0,0 +1,5 @@
---
'openzeppelin-solidity': minor
---
`Comparator`: A library of comparator functions, useful for customizing the behavior of the Heap structure.

View File

@ -0,0 +1,5 @@
---
'openzeppelin-solidity': minor
---
`Heap`: A data structure that implements a heap-based priority queue.

View File

@ -3,5 +3,6 @@
set -euo pipefail
if [ "${CI:-"false"}" != "true" ]; then
npm run test:generation
npm run lint
fi

View File

@ -22,6 +22,7 @@ import {ERC165} from "../utils/introspection/ERC165.sol";
import {ERC165Checker} from "../utils/introspection/ERC165Checker.sol";
import {ERC1967Utils} from "../proxy/ERC1967/ERC1967Utils.sol";
import {ERC721Holder} from "../token/ERC721/utils/ERC721Holder.sol";
import {Heap} from "../utils/structs/Heap.sol";
import {Math} from "../utils/math/Math.sol";
import {MerkleProof} from "../utils/cryptography/MerkleProof.sol";
import {MessageHashUtils} from "../utils/cryptography/MessageHashUtils.sol";

View File

@ -4,6 +4,7 @@
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
@ -16,7 +17,7 @@ library Arrays {
using StorageSlot for bytes32;
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
@ -27,18 +28,18 @@ library Arrays {
* consume more gas than is available in a block, leading to potential DoS.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(array, _defaultComp);
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
@ -57,7 +58,7 @@ library Arrays {
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToBytes32Array(array), _castToBytes32Comp(comp));
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
@ -65,12 +66,12 @@ library Arrays {
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToBytes32Array(array), _defaultComp);
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
@ -81,18 +82,18 @@ library Arrays {
* consume more gas than is available in a block, leading to potential DoS.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
sort(_castToBytes32Array(array), _castToBytes32Comp(comp));
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(_castToBytes32Array(array), _defaultComp);
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
@ -105,12 +106,12 @@ library Arrays {
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(bytes32, bytes32) pure returns (bool) comp) private pure {
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
bytes32 pivot = _mload(begin);
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
@ -132,7 +133,7 @@ library Arrays {
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(bytes32[] memory array) private pure returns (uint256 ptr) {
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
/// @solidity memory-safe-assembly
assembly {
ptr := add(array, 0x20)
@ -143,16 +144,16 @@ library Arrays {
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(bytes32[] memory array) private pure returns (uint256 ptr) {
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a bytes32) at location `ptr`.
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (bytes32 value) {
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
@ -170,38 +171,33 @@ library Arrays {
}
}
/// @dev Comparator for sorting arrays in increasing order.
function _defaultComp(bytes32 a, bytes32 b) private pure returns (bool) {
return a < b;
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToBytes32Array(address[] memory input) private pure returns (bytes32[] memory output) {
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast uint256 memory array to uint256 memory array
function _castToBytes32Array(uint256[] memory input) private pure returns (bytes32[] memory output) {
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to bytes32 comp function
function _castToBytes32Comp(
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(bytes32, bytes32) pure returns (bool) output) {
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast uint256 comp function to bytes32 comp function
function _castToBytes32Comp(
function(uint256, uint256) pure returns (bool) input
) private pure returns (function(bytes32, bytes32) pure returns (bool) output) {
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}

View File

@ -0,0 +1,13 @@
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}

View File

@ -25,6 +25,7 @@ Miscellaneous contracts and libraries containing utility functions you can use t
* {DoubleEndedQueue}: An implementation of a https://en.wikipedia.org/wiki/Double-ended_queue[double ended queue] whose values can be removed added or remove from both sides. Useful for FIFO and LIFO structures.
* {CircularBuffer}: A data structure to store the last N values pushed to it.
* {Checkpoints}: A data structure to store values mapped to an strictly increasing key. Can be used for storing and accessing values over time.
* {Heap}: A library that implements a https://en.wikipedia.org/wiki/Binary_heap[binary heap] in storage.
* {MerkleTree}: A library with https://wikipedia.org/wiki/Merkle_Tree[Merkle Tree] data structures and helper functions.
* {Create2}: Wrapper around the https://blog.openzeppelin.com/getting-the-most-out-of-create2/[`CREATE2` EVM opcode] for safe use without having to deal with low-level assembly.
* {Address}: Collection of functions for overloading Solidity's https://docs.soliditylang.org/en/latest/types.html#address[`address`] type.
@ -38,6 +39,7 @@ Miscellaneous contracts and libraries containing utility functions you can use t
* {Context}: An utility for abstracting the sender and calldata in the current execution context.
* {Packing}: A library for packing and unpacking multiple values into bytes32
* {Panic}: A library to revert with https://docs.soliditylang.org/en/v0.8.20/control-structures.html#panic-via-assert-and-error-via-require[Solidity panic codes].
* {Comparators}: A library that contains comparator functions to use with with the {Heap} library.
[NOTE]
====
@ -102,6 +104,8 @@ Ethereum contracts have no native concept of an interface, so applications must
{{Checkpoints}}
{{Heap}}
{{MerkleTree}}
== Libraries
@ -129,3 +133,5 @@ Ethereum contracts have no native concept of an interface, so applications must
{{Packing}}
{{Panic}}
{{Comparators}}

View File

@ -0,0 +1,578 @@
// SPDX-License-Identifier: MIT
// This file was procedurally generated from scripts/generate/templates/Heap.js.
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
import {Comparators} from "../Comparators.sol";
import {Panic} from "../Panic.sol";
/**
* @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as
* https://en.wikipedia.org/wiki/Priority_queue[priority queue].
*
* Heaps are represented as an array of Node objects. This array stores two overlapping structures:
* * A tree structure where the first element (index 0) is the root, and where the node at index i is the child of the
* node at index (i-1)/2 and the father of nodes at index 2*i+1 and 2*i+2. Each node stores the index (in the array)
* where the corresponding value is stored.
* * A list of payloads values where each index contains a value and a lookup index. The type of the value depends on
* the variant being used. The lookup is the index of the node (in the tree) that points to this value.
*
* Some invariants:
* ```
* i == heap.data[heap.data[i].index].lookup // for all indices i
* i == heap.data[heap.data[i].lookup].index // for all indices i
* ```
*
* The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the
* highest priority value is the one at the root. This value can be lookup up in constant time (O(1)) at
* `heap.data[heap.data[0].index].value`
*
* The structure is designed to perform the following operations with the corresponding complexities:
*
* * peek (get the highest priority in set): O(1)
* * insert (insert a value in the set): 0(log(n))
* * pop (remove the highest priority value in set): O(log(n))
* * replace (replace the highest priority value in set with a new value): O(log(n))
* * length (get the number of elements in the set): O(1)
* * clear (remove all elements in the set): O(1)
*/
library Heap {
using Math for *;
using SafeCast for *;
/**
* @dev Binary heap that support values of type uint256.
*
* Each element of that structures uses 2 storage slots.
*/
struct Uint256Heap {
Uint256HeapNode[] data;
}
/**
* @dev Internal node type for Uint256Heap. Stores a value of type uint256.
*/
struct Uint256HeapNode {
uint256 value;
uint64 index; // position -> value
uint64 lookup; // value -> position
}
/**
* @dev Lookup the root element of the heap.
*/
function peek(Uint256Heap storage self) internal view returns (uint256) {
// self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
return _unsafeNodeAccess(self, self.data[0].index).value;
}
/**
* @dev Remove (and return) the root element for the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(Uint256Heap storage self) internal returns (uint256) {
return pop(self, Comparators.lt);
}
/**
* @dev Remove (and return) the root element for the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(
Uint256Heap storage self,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint256) {
unchecked {
uint64 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
uint64 last = size - 1;
// get root location (in the data array) and value
Uint256HeapNode storage rootNode = _unsafeNodeAccess(self, 0);
uint64 rootIdx = rootNode.index;
Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
Uint256HeapNode storage lastNode = _unsafeNodeAccess(self, last);
uint256 rootDataValue = rootData.value;
// if root is not the last element of the data array (that will get pop-ed), reorder the data array.
if (rootIdx != last) {
// get details about the value stored in the last element of the array (that will get pop-ed)
uint64 lastDataIdx = lastNode.lookup;
uint256 lastDataValue = lastNode.value;
// copy these values to the location of the root (that is safe, and that we no longer use)
rootData.value = lastDataValue;
rootData.lookup = lastDataIdx;
// update the tree node that used to point to that last element (value now located where the root was)
_unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
}
// get last leaf location (in the data array) and value
uint64 lastIdx = lastNode.index;
uint256 lastValue = _unsafeNodeAccess(self, lastIdx).value;
// move the last leaf to the root, pop last leaf ...
rootNode.index = lastIdx;
_unsafeNodeAccess(self, lastIdx).lookup = 0;
self.data.pop();
// ... and heapify
_siftDown(self, last, 0, lastValue, comp);
// return root value
return rootDataValue;
}
}
/**
* @dev Insert a new element in the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(Uint256Heap storage self, uint256 value) internal {
insert(self, value, Comparators.lt);
}
/**
* @dev Insert a new element in the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(
Uint256Heap storage self,
uint256 value,
function(uint256, uint256) view returns (bool) comp
) internal {
uint64 size = length(self);
if (size == type(uint64).max) Panic.panic(Panic.RESOURCE_ERROR);
self.data.push(Uint256HeapNode({index: size, lookup: size, value: value}));
_siftUp(self, size, value, comp);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(Uint256Heap storage self, uint256 newValue) internal returns (uint256) {
return replace(self, newValue, Comparators.lt);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(
Uint256Heap storage self,
uint256 newValue,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint256) {
uint64 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
// position of the node that holds the data for the root
uint64 rootIdx = _unsafeNodeAccess(self, 0).index;
// storage pointer to the node that holds the data for the root
Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
// cache old value and replace it
uint256 oldValue = rootData.value;
rootData.value = newValue;
// re-heapify
_siftDown(self, size, 0, newValue, comp);
// return old root value
return oldValue;
}
/**
* @dev Returns the number of elements in the heap.
*/
function length(Uint256Heap storage self) internal view returns (uint64) {
return self.data.length.toUint64();
}
/**
* @dev Removes all elements in the heap.
*/
function clear(Uint256Heap storage self) internal {
Uint256HeapNode[] storage data = self.data;
/// @solidity memory-safe-assembly
assembly {
sstore(data.slot, 0)
}
}
/*
* @dev Swap node `i` and `j` in the tree.
*/
function _swap(Uint256Heap storage self, uint64 i, uint64 j) private {
Uint256HeapNode storage ni = _unsafeNodeAccess(self, i);
Uint256HeapNode storage nj = _unsafeNodeAccess(self, j);
uint64 ii = ni.index;
uint64 jj = nj.index;
// update pointers to the data (swap the value)
ni.index = jj;
nj.index = ii;
// update lookup pointers for consistency
_unsafeNodeAccess(self, ii).lookup = j;
_unsafeNodeAccess(self, jj).lookup = i;
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the leafs of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `length`
* and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These
* parameters are not verified. It is the caller role to make sure the parameters are correct.
*/
function _siftDown(
Uint256Heap storage self,
uint64 size,
uint64 pos,
uint256 value,
function(uint256, uint256) view returns (bool) comp
) private {
uint256 left = 2 * pos + 1; // this could overflow uint64
uint256 right = 2 * pos + 2; // this could overflow uint64
if (right < size) {
// the check guarantees that `left` and `right` are both valid uint32
uint64 lIndex = uint64(left);
uint64 rIndex = uint64(right);
uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
uint256 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
if (comp(lValue, value) || comp(rValue, value)) {
uint64 index = uint64(comp(lValue, rValue).ternary(lIndex, rIndex));
_swap(self, pos, index);
_siftDown(self, size, index, value, comp);
}
} else if (left < size) {
// the check guarantees that `left` is a valid uint32
uint64 lIndex = uint64(left);
uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
if (comp(lValue, value)) {
_swap(self, pos, lIndex);
_siftDown(self, size, lIndex, value, comp);
}
}
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the root of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
* could be extracted from `self` and `pos`, but that would require redundant storage read. This parameters is not
* verified. It is the caller role to make sure the parameters are correct.
*/
function _siftUp(
Uint256Heap storage self,
uint64 pos,
uint256 value,
function(uint256, uint256) view returns (bool) comp
) private {
unchecked {
while (pos > 0) {
uint64 parent = (pos - 1) / 2;
uint256 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
if (comp(parentValue, value)) break;
_swap(self, pos, parent);
pos = parent;
}
}
}
function _unsafeNodeAccess(
Uint256Heap storage self,
uint64 pos
) private pure returns (Uint256HeapNode storage result) {
assembly ("memory-safe") {
mstore(0x00, self.slot)
result.slot := add(keccak256(0x00, 0x20), mul(pos, 2))
}
}
/**
* @dev Binary heap that support values of type uint208.
*
* Each element of that structures uses 1 storage slots.
*/
struct Uint208Heap {
Uint208HeapNode[] data;
}
/**
* @dev Internal node type for Uint208Heap. Stores a value of type uint208.
*/
struct Uint208HeapNode {
uint208 value;
uint24 index; // position -> value
uint24 lookup; // value -> position
}
/**
* @dev Lookup the root element of the heap.
*/
function peek(Uint208Heap storage self) internal view returns (uint208) {
// self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
return _unsafeNodeAccess(self, self.data[0].index).value;
}
/**
* @dev Remove (and return) the root element for the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(Uint208Heap storage self) internal returns (uint208) {
return pop(self, Comparators.lt);
}
/**
* @dev Remove (and return) the root element for the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(
Uint208Heap storage self,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint208) {
unchecked {
uint24 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
uint24 last = size - 1;
// get root location (in the data array) and value
Uint208HeapNode storage rootNode = _unsafeNodeAccess(self, 0);
uint24 rootIdx = rootNode.index;
Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
Uint208HeapNode storage lastNode = _unsafeNodeAccess(self, last);
uint208 rootDataValue = rootData.value;
// if root is not the last element of the data array (that will get pop-ed), reorder the data array.
if (rootIdx != last) {
// get details about the value stored in the last element of the array (that will get pop-ed)
uint24 lastDataIdx = lastNode.lookup;
uint208 lastDataValue = lastNode.value;
// copy these values to the location of the root (that is safe, and that we no longer use)
rootData.value = lastDataValue;
rootData.lookup = lastDataIdx;
// update the tree node that used to point to that last element (value now located where the root was)
_unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
}
// get last leaf location (in the data array) and value
uint24 lastIdx = lastNode.index;
uint208 lastValue = _unsafeNodeAccess(self, lastIdx).value;
// move the last leaf to the root, pop last leaf ...
rootNode.index = lastIdx;
_unsafeNodeAccess(self, lastIdx).lookup = 0;
self.data.pop();
// ... and heapify
_siftDown(self, last, 0, lastValue, comp);
// return root value
return rootDataValue;
}
}
/**
* @dev Insert a new element in the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(Uint208Heap storage self, uint208 value) internal {
insert(self, value, Comparators.lt);
}
/**
* @dev Insert a new element in the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(
Uint208Heap storage self,
uint208 value,
function(uint256, uint256) view returns (bool) comp
) internal {
uint24 size = length(self);
if (size == type(uint24).max) Panic.panic(Panic.RESOURCE_ERROR);
self.data.push(Uint208HeapNode({index: size, lookup: size, value: value}));
_siftUp(self, size, value, comp);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(Uint208Heap storage self, uint208 newValue) internal returns (uint208) {
return replace(self, newValue, Comparators.lt);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(
Uint208Heap storage self,
uint208 newValue,
function(uint256, uint256) view returns (bool) comp
) internal returns (uint208) {
uint24 size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
// position of the node that holds the data for the root
uint24 rootIdx = _unsafeNodeAccess(self, 0).index;
// storage pointer to the node that holds the data for the root
Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
// cache old value and replace it
uint208 oldValue = rootData.value;
rootData.value = newValue;
// re-heapify
_siftDown(self, size, 0, newValue, comp);
// return old root value
return oldValue;
}
/**
* @dev Returns the number of elements in the heap.
*/
function length(Uint208Heap storage self) internal view returns (uint24) {
return self.data.length.toUint24();
}
/**
* @dev Removes all elements in the heap.
*/
function clear(Uint208Heap storage self) internal {
Uint208HeapNode[] storage data = self.data;
/// @solidity memory-safe-assembly
assembly {
sstore(data.slot, 0)
}
}
/*
* @dev Swap node `i` and `j` in the tree.
*/
function _swap(Uint208Heap storage self, uint24 i, uint24 j) private {
Uint208HeapNode storage ni = _unsafeNodeAccess(self, i);
Uint208HeapNode storage nj = _unsafeNodeAccess(self, j);
uint24 ii = ni.index;
uint24 jj = nj.index;
// update pointers to the data (swap the value)
ni.index = jj;
nj.index = ii;
// update lookup pointers for consistency
_unsafeNodeAccess(self, ii).lookup = j;
_unsafeNodeAccess(self, jj).lookup = i;
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the leafs of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `length`
* and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These
* parameters are not verified. It is the caller role to make sure the parameters are correct.
*/
function _siftDown(
Uint208Heap storage self,
uint24 size,
uint24 pos,
uint208 value,
function(uint256, uint256) view returns (bool) comp
) private {
uint256 left = 2 * pos + 1; // this could overflow uint24
uint256 right = 2 * pos + 2; // this could overflow uint24
if (right < size) {
// the check guarantees that `left` and `right` are both valid uint32
uint24 lIndex = uint24(left);
uint24 rIndex = uint24(right);
uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
uint208 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
if (comp(lValue, value) || comp(rValue, value)) {
uint24 index = uint24(comp(lValue, rValue).ternary(lIndex, rIndex));
_swap(self, pos, index);
_siftDown(self, size, index, value, comp);
}
} else if (left < size) {
// the check guarantees that `left` is a valid uint32
uint24 lIndex = uint24(left);
uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
if (comp(lValue, value)) {
_swap(self, pos, lIndex);
_siftDown(self, size, lIndex, value, comp);
}
}
}
/**
* @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
* comparator, and moving toward the root of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
* could be extracted from `self` and `pos`, but that would require redundant storage read. This parameters is not
* verified. It is the caller role to make sure the parameters are correct.
*/
function _siftUp(
Uint208Heap storage self,
uint24 pos,
uint208 value,
function(uint256, uint256) view returns (bool) comp
) private {
unchecked {
while (pos > 0) {
uint24 parent = (pos - 1) / 2;
uint208 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
if (comp(parentValue, value)) break;
_swap(self, pos, parent);
pos = parent;
}
}
}
function _unsafeNodeAccess(
Uint208Heap storage self,
uint24 pos
) private pure returns (Uint208HeapNode storage result) {
assembly ("memory-safe") {
mstore(0x00, self.slot)
result.slot := add(keccak256(0x00, 0x20), pos)
}
}
}

View File

@ -189,6 +189,7 @@ Some use cases require more powerful data structures than arrays and mappings of
- xref:api:utils.adoc#EnumerableSet[`EnumerableSet`]: A https://en.wikipedia.org/wiki/Set_(abstract_data_type)[set] with enumeration capabilities.
- xref:api:utils.adoc#EnumerableMap[`EnumerableMap`]: A `mapping` variant with enumeration capabilities.
- xref:api:utils.adoc#MerkleTree[`MerkleTree`]: An on-chain https://wikipedia.org/wiki/Merkle_Tree[Merkle Tree] with helper functions.
- xref:api:utils.adoc#Heap.sol[`Heap`]: A
The `Enumerable*` structures are similar to mappings in that they store and remove elements in constant time and don't allow for repeated entries, but they also support _enumeration_, which means you can easily query all stored entries both on and off-chain.
@ -240,6 +241,32 @@ function _hashFn(bytes32 a, bytes32 b) internal view returns(bytes32) {
}
----
=== Using a Heap
A https://en.wikipedia.org/wiki/Binary_heap[binary heap] is a data structure that always store the most important element at its peak and it can be used as a priority queue.
To define what is most important in a heap, these frequently take comparator functions that tell the binary heap whether a value has more relevance than another.
OpenZeppelin Contracts implements a Heap data structure with the properties of a binary heap. The heap uses the xref:api:utils.adoc#Comparators-lt-uint256-uint256-[`lt`] function by default but allows to customize its comparator.
When using a custom comparator, it's recommended to wrap your function to avoid the possibility of mistakenly using a different comparator function:
[source,solidity]
----
function pop(Uint256Heap storage self) internal returns (uint256) {
return pop(self, Comparators.gt);
}
function insert(Uint256Heap storage self, uint256 value) internal {
insert(self, value, Comparators.gt);
}
function replace(Uint256Heap storage self, uint256 newValue) internal returns (uint256) {
return replace(self, newValue, Comparators.gt);
}
----
[[misc]]
== Misc
@ -292,7 +319,7 @@ function _setImplementation(address newImplementation) internal {
}
----
The xref:api:utils.adoc#StorageSlot[`StorageSlot`] library also supports transient storage through user defined value types (UDVTs[https://docs.soliditylang.org/en/latest/types.html#user-defined-value-types]), which enables the same value types as in Solidity.
The xref:api:utils.adoc#StorageSlot[`StorageSlot`] library also supports transient storage through user defined value types (https://docs.soliditylang.org/en/latest/types.html#user-defined-value-types[UDVTs]), which enables the same value types as in Solidity.
[source,solidity]
----

View File

@ -34,9 +34,10 @@ function generateFromTemplate(file, template, outputPrefix = '') {
for (const [file, template] of Object.entries({
'utils/cryptography/MerkleProof.sol': './templates/MerkleProof.js',
'utils/math/SafeCast.sol': './templates/SafeCast.js',
'utils/structs/Checkpoints.sol': './templates/Checkpoints.js',
'utils/structs/EnumerableSet.sol': './templates/EnumerableSet.js',
'utils/structs/EnumerableMap.sol': './templates/EnumerableMap.js',
'utils/structs/Checkpoints.sol': './templates/Checkpoints.js',
'utils/structs/Heap.sol': './templates/Heap.js',
'utils/SlotDerivation.sol': './templates/SlotDerivation.js',
'utils/StorageSlot.sol': './templates/StorageSlot.js',
'utils/Arrays.sol': './templates/Arrays.js',
@ -49,6 +50,7 @@ for (const [file, template] of Object.entries({
// Tests
for (const [file, template] of Object.entries({
'utils/structs/Checkpoints.t.sol': './templates/Checkpoints.t.js',
'utils/structs/Heap.t.sol': './templates/Heap.t.js',
'utils/Packing.t.sol': './templates/Packing.t.js',
'utils/SlotDerivation.t.sol': './templates/SlotDerivation.t.js',
})) {

View File

@ -5,6 +5,7 @@ const { TYPES } = require('./Arrays.opts');
const header = `\
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
@ -31,9 +32,9 @@ function sort(
function(${type}, ${type}) pure returns (bool) comp
) internal pure returns (${type}[] memory) {
${
type === 'bytes32'
type === 'uint256'
? '_quickSort(_begin(array), _end(array), comp);'
: 'sort(_castToBytes32Array(array), _castToBytes32Comp(comp));'
: 'sort(_castToUint256Array(array), _castToUint256Comp(comp));'
}
return array;
}
@ -42,7 +43,7 @@ function sort(
* @dev Variant of {sort} that sorts an array of ${type} in increasing order.
*/
function sort(${type}[] memory array) internal pure returns (${type}[] memory) {
${type === 'bytes32' ? 'sort(array, _defaultComp);' : 'sort(_castToBytes32Array(array), _defaultComp);'}
${type === 'uint256' ? 'sort(array, Comparators.lt);' : 'sort(_castToUint256Array(array), Comparators.lt);'}
return array;
}
`;
@ -57,12 +58,12 @@ const quickSort = `\
* IMPORTANT: Memory locations between \`begin\` and \`end\` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(bytes32, bytes32) pure returns (bool) comp) private pure {
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
bytes32 pivot = _mload(begin);
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
@ -84,7 +85,7 @@ function _quickSort(uint256 begin, uint256 end, function(bytes32, bytes32) pure
/**
* @dev Pointer to the memory location of the first element of \`array\`.
*/
function _begin(bytes32[] memory array) private pure returns (uint256 ptr) {
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
/// @solidity memory-safe-assembly
assembly {
ptr := add(array, 0x20)
@ -95,16 +96,16 @@ function _begin(bytes32[] memory array) private pure returns (uint256 ptr) {
* @dev Pointer to the memory location of the first memory word (32bytes) after \`array\`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(bytes32[] memory array) private pure returns (uint256 ptr) {
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a bytes32) at location \`ptr\`.
* @dev Load memory word (as a uint256) at location \`ptr\`.
*/
function _mload(uint256 ptr) private pure returns (bytes32 value) {
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
@ -123,16 +124,9 @@ function _swap(uint256 ptr1, uint256 ptr2) private pure {
}
`;
const defaultComparator = `\
/// @dev Comparator for sorting arrays in increasing order.
function _defaultComp(bytes32 a, bytes32 b) private pure returns (bool) {
return a < b;
}
`;
const castArray = type => `\
/// @dev Helper: low level cast ${type} memory array to uint256 memory array
function _castToBytes32Array(${type}[] memory input) private pure returns (bytes32[] memory output) {
function _castToUint256Array(${type}[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
@ -140,10 +134,10 @@ function _castToBytes32Array(${type}[] memory input) private pure returns (bytes
`;
const castComparator = type => `\
/// @dev Helper: low level cast ${type} comp function to bytes32 comp function
function _castToBytes32Comp(
/// @dev Helper: low level cast ${type} comp function to uint256 comp function
function _castToUint256Comp(
function(${type}, ${type}) pure returns (bool) input
) private pure returns (function(bytes32, bytes32) pure returns (bool) output) {
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
@ -374,12 +368,11 @@ module.exports = format(
'using StorageSlot for bytes32;',
'',
// sorting, comparator, helpers and internal
sort('bytes32'),
TYPES.filter(type => type !== 'bytes32').map(sort),
sort('uint256'),
TYPES.filter(type => type !== 'uint256').map(sort),
quickSort,
defaultComparator,
TYPES.filter(type => type !== 'bytes32').map(castArray),
TYPES.filter(type => type !== 'bytes32').map(castComparator),
TYPES.filter(type => type !== 'uint256').map(castArray),
TYPES.filter(type => type !== 'uint256').map(castComparator),
// lookup
search,
// unsafe (direct) storage and memory access

View File

@ -0,0 +1,328 @@
const format = require('../format-lines');
const { TYPES } = require('./Heap.opts');
const { capitalize } = require('../../helpers');
/* eslint-disable max-len */
const header = `\
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
import {Comparators} from "../Comparators.sol";
import {Panic} from "../Panic.sol";
/**
* @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as
* https://en.wikipedia.org/wiki/Priority_queue[priority queue].
*
* Heaps are represented as an array of Node objects. This array stores two overlapping structures:
* * A tree structure where the first element (index 0) is the root, and where the node at index i is the child of the
* node at index (i-1)/2 and the father of nodes at index 2*i+1 and 2*i+2. Each node stores the index (in the array)
* where the corresponding value is stored.
* * A list of payloads values where each index contains a value and a lookup index. The type of the value depends on
* the variant being used. The lookup is the index of the node (in the tree) that points to this value.
*
* Some invariants:
* \`\`\`
* i == heap.data[heap.data[i].index].lookup // for all indices i
* i == heap.data[heap.data[i].lookup].index // for all indices i
* \`\`\`
*
* The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the
* highest priority value is the one at the root. This value can be lookup up in constant time (O(1)) at
* \`heap.data[heap.data[0].index].value\`
*
* The structure is designed to perform the following operations with the corresponding complexities:
*
* * peek (get the highest priority in set): O(1)
* * insert (insert a value in the set): 0(log(n))
* * pop (remove the highest priority value in set): O(log(n))
* * replace (replace the highest priority value in set with a new value): O(log(n))
* * length (get the number of elements in the set): O(1)
* * clear (remove all elements in the set): O(1)
*/
`;
const generate = ({ struct, node, valueType, indexType, blockSize }) => `\
/**
* @dev Binary heap that support values of type ${valueType}.
*
* Each element of that structures uses ${blockSize} storage slots.
*/
struct ${struct} {
${node}[] data;
}
/**
* @dev Internal node type for ${struct}. Stores a value of type ${valueType}.
*/
struct ${node} {
${valueType} value;
${indexType} index; // position -> value
${indexType} lookup; // value -> position
}
/**
* @dev Lookup the root element of the heap.
*/
function peek(${struct} storage self) internal view returns (${valueType}) {
// self.data[0] will \`ARRAY_ACCESS_OUT_OF_BOUNDS\` panic if heap is empty.
return _unsafeNodeAccess(self, self.data[0].index).value;
}
/**
* @dev Remove (and return) the root element for the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(${struct} storage self) internal returns (${valueType}) {
return pop(self, Comparators.lt);
}
/**
* @dev Remove (and return) the root element for the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function pop(
${struct} storage self,
function(uint256, uint256) view returns (bool) comp
) internal returns (${valueType}) {
unchecked {
${indexType} size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
${indexType} last = size - 1;
// get root location (in the data array) and value
${node} storage rootNode = _unsafeNodeAccess(self, 0);
${indexType} rootIdx = rootNode.index;
${node} storage rootData = _unsafeNodeAccess(self, rootIdx);
${node} storage lastNode = _unsafeNodeAccess(self, last);
${valueType} rootDataValue = rootData.value;
// if root is not the last element of the data array (that will get pop-ed), reorder the data array.
if (rootIdx != last) {
// get details about the value stored in the last element of the array (that will get pop-ed)
${indexType} lastDataIdx = lastNode.lookup;
${valueType} lastDataValue = lastNode.value;
// copy these values to the location of the root (that is safe, and that we no longer use)
rootData.value = lastDataValue;
rootData.lookup = lastDataIdx;
// update the tree node that used to point to that last element (value now located where the root was)
_unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
}
// get last leaf location (in the data array) and value
${indexType} lastIdx = lastNode.index;
${valueType} lastValue = _unsafeNodeAccess(self, lastIdx).value;
// move the last leaf to the root, pop last leaf ...
rootNode.index = lastIdx;
_unsafeNodeAccess(self, lastIdx).lookup = 0;
self.data.pop();
// ... and heapify
_siftDown(self, last, 0, lastValue, comp);
// return root value
return rootDataValue;
}
}
/**
* @dev Insert a new element in the heap using the default comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(${struct} storage self, ${valueType} value) internal {
insert(self, value, Comparators.lt);
}
/**
* @dev Insert a new element in the heap using the provided comparator.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function insert(
${struct} storage self,
${valueType} value,
function(uint256, uint256) view returns (bool) comp
) internal {
${indexType} size = length(self);
if (size == type(${indexType}).max) Panic.panic(Panic.RESOURCE_ERROR);
self.data.push(${struct}Node({index: size, lookup: size, value: value}));
_siftUp(self, size, value, comp);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(${struct} storage self, ${valueType} newValue) internal returns (${valueType}) {
return replace(self, newValue, Comparators.lt);
}
/**
* @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
* This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
*
* NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
* during the lifecycle of a heap will result in undefined behavior.
*/
function replace(
${struct} storage self,
${valueType} newValue,
function(uint256, uint256) view returns (bool) comp
) internal returns (${valueType}) {
${indexType} size = length(self);
if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
// position of the node that holds the data for the root
${indexType} rootIdx = _unsafeNodeAccess(self, 0).index;
// storage pointer to the node that holds the data for the root
${node} storage rootData = _unsafeNodeAccess(self, rootIdx);
// cache old value and replace it
${valueType} oldValue = rootData.value;
rootData.value = newValue;
// re-heapify
_siftDown(self, size, 0, newValue, comp);
// return old root value
return oldValue;
}
/**
* @dev Returns the number of elements in the heap.
*/
function length(${struct} storage self) internal view returns (${indexType}) {
return self.data.length.to${capitalize(indexType)}();
}
/**
* @dev Removes all elements in the heap.
*/
function clear(${struct} storage self) internal {
${struct}Node[] storage data = self.data;
/// @solidity memory-safe-assembly
assembly {
sstore(data.slot, 0)
}
}
/*
* @dev Swap node \`i\` and \`j\` in the tree.
*/
function _swap(${struct} storage self, ${indexType} i, ${indexType} j) private {
${node} storage ni = _unsafeNodeAccess(self, i);
${node} storage nj = _unsafeNodeAccess(self, j);
${indexType} ii = ni.index;
${indexType} jj = nj.index;
// update pointers to the data (swap the value)
ni.index = jj;
nj.index = ii;
// update lookup pointers for consistency
_unsafeNodeAccess(self, ii).lookup = j;
_unsafeNodeAccess(self, jj).lookup = i;
}
/**
* @dev Perform heap maintenance on \`self\`, starting at position \`pos\` (with the \`value\`), using \`comp\` as a
* comparator, and moving toward the leafs of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. \`length\`
* and \`value\` could be extracted from \`self\` and \`pos\`, but that would require redundant storage read. These
* parameters are not verified. It is the caller role to make sure the parameters are correct.
*/
function _siftDown(
${struct} storage self,
${indexType} size,
${indexType} pos,
${valueType} value,
function(uint256, uint256) view returns (bool) comp
) private {
uint256 left = 2 * pos + 1; // this could overflow ${indexType}
uint256 right = 2 * pos + 2; // this could overflow ${indexType}
if (right < size) {
// the check guarantees that \`left\` and \`right\` are both valid uint32
${indexType} lIndex = ${indexType}(left);
${indexType} rIndex = ${indexType}(right);
${valueType} lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
${valueType} rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
if (comp(lValue, value) || comp(rValue, value)) {
${indexType} index = ${indexType}(comp(lValue, rValue).ternary(lIndex, rIndex));
_swap(self, pos, index);
_siftDown(self, size, index, value, comp);
}
} else if (left < size) {
// the check guarantees that \`left\` is a valid uint32
${indexType} lIndex = ${indexType}(left);
${valueType} lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
if (comp(lValue, value)) {
_swap(self, pos, lIndex);
_siftDown(self, size, lIndex, value, comp);
}
}
}
/**
* @dev Perform heap maintenance on \`self\`, starting at position \`pos\` (with the \`value\`), using \`comp\` as a
* comparator, and moving toward the root of the underlying tree.
*
* NOTE: This is a private function that is called in a trusted context with already cached parameters. \`value\`
* could be extracted from \`self\` and \`pos\`, but that would require redundant storage read. This parameters is not
* verified. It is the caller role to make sure the parameters are correct.
*/
function _siftUp(
${struct} storage self,
${indexType} pos,
${valueType} value,
function(uint256, uint256) view returns (bool) comp
) private {
unchecked {
while (pos > 0) {
${indexType} parent = (pos - 1) / 2;
${valueType} parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
if (comp(parentValue, value)) break;
_swap(self, pos, parent);
pos = parent;
}
}
}
function _unsafeNodeAccess(
${struct} storage self,
${indexType} pos
) private pure returns (${node} storage result) {
assembly ("memory-safe") {
mstore(0x00, self.slot)
result.slot := add(keccak256(0x00, 0x20), ${blockSize == 1 ? 'pos' : `mul(pos, ${blockSize})`})
}
}
`;
// GENERATE
module.exports = format(
header.trimEnd(),
'library Heap {',
format(
[].concat(
'using Math for *;',
'using SafeCast for *;',
'',
TYPES.map(type => generate(type)),
),
).trimEnd(),
'}',
);

View File

@ -0,0 +1,13 @@
const makeType = (valueSize, indexSize) => ({
struct: `Uint${valueSize}Heap`,
node: `Uint${valueSize}HeapNode`,
valueSize,
valueType: `uint${valueSize}`,
indexSize,
indexType: `uint${indexSize}`,
blockSize: Math.ceil((valueSize + 2 * indexSize) / 256),
});
module.exports = {
TYPES: [makeType(256, 64), makeType(208, 24)],
};

View File

@ -0,0 +1,89 @@
const format = require('../format-lines');
const { TYPES } = require('./Heap.opts');
/* eslint-disable max-len */
const header = `\
pragma solidity ^0.8.20;
import {Test} from "forge-std/Test.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Heap} from "@openzeppelin/contracts/utils/structs/Heap.sol";
import {Comparators} from "@openzeppelin/contracts/utils/Comparators.sol";
`;
const generate = ({ struct, valueType }) => `\
contract ${struct}Test is Test {
using Heap for Heap.${struct};
Heap.${struct} internal heap;
function _validateHeap(function(uint256, uint256) view returns (bool) comp) internal {
for (uint32 i = 0; i < heap.length(); ++i) {
// lookups
assertEq(i, heap.data[heap.data[i].index].lookup);
assertEq(i, heap.data[heap.data[i].lookup].index);
// ordering: each node has a value bigger then its parent
if (i > 0)
assertFalse(comp(heap.data[heap.data[i].index].value, heap.data[heap.data[(i - 1) / 2].index].value));
}
}
function testFuzz(${valueType}[] calldata input) public {
vm.assume(input.length < 0x20);
assertEq(heap.length(), 0);
uint256 min = type(uint256).max;
for (uint256 i = 0; i < input.length; ++i) {
heap.insert(input[i]);
assertEq(heap.length(), i + 1);
_validateHeap(Comparators.lt);
min = Math.min(min, input[i]);
assertEq(heap.peek(), min);
}
uint256 max = 0;
for (uint256 i = 0; i < input.length; ++i) {
${valueType} top = heap.peek();
${valueType} pop = heap.pop();
assertEq(heap.length(), input.length - i - 1);
_validateHeap(Comparators.lt);
assertEq(pop, top);
assertGe(pop, max);
max = pop;
}
}
function testFuzzGt(${valueType}[] calldata input) public {
vm.assume(input.length < 0x20);
assertEq(heap.length(), 0);
uint256 max = 0;
for (uint256 i = 0; i < input.length; ++i) {
heap.insert(input[i], Comparators.gt);
assertEq(heap.length(), i + 1);
_validateHeap(Comparators.gt);
max = Math.max(max, input[i]);
assertEq(heap.peek(), max);
}
uint256 min = type(uint256).max;
for (uint256 i = 0; i < input.length; ++i) {
${valueType} top = heap.peek();
${valueType} pop = heap.pop(Comparators.gt);
assertEq(heap.length(), input.length - i - 1);
_validateHeap(Comparators.gt);
assertEq(pop, top);
assertLe(pop, min);
min = pop;
}
}
}
`;
// GENERATE
module.exports = format(header, ...TYPES.map(type => generate(type)));

View File

@ -0,0 +1,153 @@
// SPDX-License-Identifier: MIT
// This file was procedurally generated from scripts/generate/templates/Heap.t.js.
pragma solidity ^0.8.20;
import {Test} from "forge-std/Test.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Heap} from "@openzeppelin/contracts/utils/structs/Heap.sol";
import {Comparators} from "@openzeppelin/contracts/utils/Comparators.sol";
contract Uint256HeapTest is Test {
using Heap for Heap.Uint256Heap;
Heap.Uint256Heap internal heap;
function _validateHeap(function(uint256, uint256) view returns (bool) comp) internal {
for (uint32 i = 0; i < heap.length(); ++i) {
// lookups
assertEq(i, heap.data[heap.data[i].index].lookup);
assertEq(i, heap.data[heap.data[i].lookup].index);
// ordering: each node has a value bigger then its parent
if (i > 0)
assertFalse(comp(heap.data[heap.data[i].index].value, heap.data[heap.data[(i - 1) / 2].index].value));
}
}
function testFuzz(uint256[] calldata input) public {
vm.assume(input.length < 0x20);
assertEq(heap.length(), 0);
uint256 min = type(uint256).max;
for (uint256 i = 0; i < input.length; ++i) {
heap.insert(input[i]);
assertEq(heap.length(), i + 1);
_validateHeap(Comparators.lt);
min = Math.min(min, input[i]);
assertEq(heap.peek(), min);
}
uint256 max = 0;
for (uint256 i = 0; i < input.length; ++i) {
uint256 top = heap.peek();
uint256 pop = heap.pop();
assertEq(heap.length(), input.length - i - 1);
_validateHeap(Comparators.lt);
assertEq(pop, top);
assertGe(pop, max);
max = pop;
}
}
function testFuzzGt(uint256[] calldata input) public {
vm.assume(input.length < 0x20);
assertEq(heap.length(), 0);
uint256 max = 0;
for (uint256 i = 0; i < input.length; ++i) {
heap.insert(input[i], Comparators.gt);
assertEq(heap.length(), i + 1);
_validateHeap(Comparators.gt);
max = Math.max(max, input[i]);
assertEq(heap.peek(), max);
}
uint256 min = type(uint256).max;
for (uint256 i = 0; i < input.length; ++i) {
uint256 top = heap.peek();
uint256 pop = heap.pop(Comparators.gt);
assertEq(heap.length(), input.length - i - 1);
_validateHeap(Comparators.gt);
assertEq(pop, top);
assertLe(pop, min);
min = pop;
}
}
}
contract Uint208HeapTest is Test {
using Heap for Heap.Uint208Heap;
Heap.Uint208Heap internal heap;
function _validateHeap(function(uint256, uint256) view returns (bool) comp) internal {
for (uint32 i = 0; i < heap.length(); ++i) {
// lookups
assertEq(i, heap.data[heap.data[i].index].lookup);
assertEq(i, heap.data[heap.data[i].lookup].index);
// ordering: each node has a value bigger then its parent
if (i > 0)
assertFalse(comp(heap.data[heap.data[i].index].value, heap.data[heap.data[(i - 1) / 2].index].value));
}
}
function testFuzz(uint208[] calldata input) public {
vm.assume(input.length < 0x20);
assertEq(heap.length(), 0);
uint256 min = type(uint256).max;
for (uint256 i = 0; i < input.length; ++i) {
heap.insert(input[i]);
assertEq(heap.length(), i + 1);
_validateHeap(Comparators.lt);
min = Math.min(min, input[i]);
assertEq(heap.peek(), min);
}
uint256 max = 0;
for (uint256 i = 0; i < input.length; ++i) {
uint208 top = heap.peek();
uint208 pop = heap.pop();
assertEq(heap.length(), input.length - i - 1);
_validateHeap(Comparators.lt);
assertEq(pop, top);
assertGe(pop, max);
max = pop;
}
}
function testFuzzGt(uint208[] calldata input) public {
vm.assume(input.length < 0x20);
assertEq(heap.length(), 0);
uint256 max = 0;
for (uint256 i = 0; i < input.length; ++i) {
heap.insert(input[i], Comparators.gt);
assertEq(heap.length(), i + 1);
_validateHeap(Comparators.gt);
max = Math.max(max, input[i]);
assertEq(heap.peek(), max);
}
uint256 min = type(uint256).max;
for (uint256 i = 0; i < input.length; ++i) {
uint208 top = heap.peek();
uint208 pop = heap.pop(Comparators.gt);
assertEq(heap.length(), input.length - i - 1);
_validateHeap(Comparators.gt);
assertEq(pop, top);
assertLe(pop, min);
min = pop;
}
}
}

View File

@ -0,0 +1,131 @@
const { ethers } = require('hardhat');
const { expect } = require('chai');
const { loadFixture } = require('@nomicfoundation/hardhat-network-helpers');
const { PANIC_CODES } = require('@nomicfoundation/hardhat-chai-matchers/panic');
const { TYPES } = require('../../../scripts/generate/templates/Heap.opts');
async function fixture() {
const mock = await ethers.deployContract('$Heap');
return { mock };
}
describe('Heap', function () {
beforeEach(async function () {
Object.assign(this, await loadFixture(fixture));
});
for (const { struct, valueType } of TYPES) {
describe(struct, function () {
const popEvent = `return$pop_Heap_${struct}`;
const replaceEvent = `return$replace_Heap_${struct}_${valueType}`;
beforeEach(async function () {
this.helper = {
clear: (...args) => this.mock[`$clear_Heap_${struct}`](0, ...args),
insert: (...args) => this.mock[`$insert(uint256,${valueType})`](0, ...args),
replace: (...args) => this.mock[`$replace(uint256,${valueType})`](0, ...args),
length: (...args) => this.mock[`$length_Heap_${struct}`](0, ...args),
pop: (...args) => this.mock[`$pop_Heap_${struct}`](0, ...args),
peek: (...args) => this.mock[`$peek_Heap_${struct}`](0, ...args),
};
});
it('starts empty', async function () {
expect(await this.helper.length()).to.equal(0n);
});
it('peek, pop and replace from empty', async function () {
await expect(this.helper.peek()).to.be.revertedWithPanic(PANIC_CODES.ARRAY_ACCESS_OUT_OF_BOUNDS);
await expect(this.helper.pop()).to.be.revertedWithPanic(PANIC_CODES.POP_ON_EMPTY_ARRAY);
await expect(this.helper.replace(0n)).to.be.revertedWithPanic(PANIC_CODES.POP_ON_EMPTY_ARRAY);
});
it('clear', async function () {
await this.helper.insert(42n);
expect(await this.helper.length()).to.equal(1n);
expect(await this.helper.peek()).to.equal(42n);
await this.helper.clear();
expect(await this.helper.length()).to.equal(0n);
await expect(this.helper.peek()).to.be.revertedWithPanic(PANIC_CODES.ARRAY_ACCESS_OUT_OF_BOUNDS);
});
it('support duplicated items', async function () {
expect(await this.helper.length()).to.equal(0n);
// insert 5 times
await this.helper.insert(42n);
await this.helper.insert(42n);
await this.helper.insert(42n);
await this.helper.insert(42n);
await this.helper.insert(42n);
// pop 5 times
await expect(this.helper.pop()).to.emit(this.mock, popEvent).withArgs(42n);
await expect(this.helper.pop()).to.emit(this.mock, popEvent).withArgs(42n);
await expect(this.helper.pop()).to.emit(this.mock, popEvent).withArgs(42n);
await expect(this.helper.pop()).to.emit(this.mock, popEvent).withArgs(42n);
await expect(this.helper.pop()).to.emit(this.mock, popEvent).withArgs(42n);
// popping a 6th time panics
await expect(this.helper.pop()).to.be.revertedWithPanic(PANIC_CODES.POP_ON_EMPTY_ARRAY);
});
it('insert, pop and replace', async function () {
const heap = [];
for (const { op, value } of [
{ op: 'insert', value: 712 }, // [712]
{ op: 'insert', value: 20 }, // [20, 712]
{ op: 'insert', value: 4337 }, // [20, 712, 4437]
{ op: 'pop' }, // 20, [712, 4437]
{ op: 'insert', value: 1559 }, // [712, 1559, 4437]
{ op: 'insert', value: 165 }, // [165, 712, 1559, 4437]
{ op: 'insert', value: 155 }, // [155, 165, 712, 1559, 4437]
{ op: 'insert', value: 7702 }, // [155, 165, 712, 1559, 4437, 7702]
{ op: 'pop' }, // 155, [165, 712, 1559, 4437, 7702]
{ op: 'replace', value: 721 }, // 165, [712, 721, 1559, 4437, 7702]
{ op: 'pop' }, // 712, [721, 1559, 4437, 7702]
{ op: 'pop' }, // 721, [1559, 4437, 7702]
{ op: 'pop' }, // 1559, [4437, 7702]
{ op: 'pop' }, // 4437, [7702]
{ op: 'pop' }, // 7702, []
{ op: 'pop' }, // panic
{ op: 'replace', value: '1363' }, // panic
]) {
switch (op) {
case 'insert':
await this.helper.insert(value);
heap.push(value);
heap.sort((a, b) => a - b);
break;
case 'pop':
if (heap.length == 0) {
await expect(this.helper.pop()).to.be.revertedWithPanic(PANIC_CODES.POP_ON_EMPTY_ARRAY);
} else {
await expect(this.helper.pop()).to.emit(this.mock, popEvent).withArgs(heap.shift());
}
break;
case 'replace':
if (heap.length == 0) {
await expect(this.helper.replace(value)).to.be.revertedWithPanic(PANIC_CODES.POP_ON_EMPTY_ARRAY);
} else {
await expect(this.helper.replace(value)).to.emit(this.mock, replaceEvent).withArgs(heap.shift());
heap.push(value);
heap.sort((a, b) => a - b);
}
break;
}
expect(await this.helper.length()).to.equal(heap.length);
if (heap.length == 0) {
await expect(this.helper.peek()).to.be.revertedWithPanic(PANIC_CODES.ARRAY_ACCESS_OUT_OF_BOUNDS);
} else {
expect(await this.helper.peek()).to.equal(heap[0]);
}
}
});
});
}
});